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SUMMARY: The motion in a field featured by a force function A/r + B/r3

(the Schwarzschild problem) constitutes a realistic model for the dynamics in the
relativistic solar gravitational filed. A qualitative study is performed by using the
powerful tool of McGehee’s transformations. The local flow on collision and infinity
manifolds is described, allowing the study of orbits with very large eccentricities. For
the case of parabolic-type motion, the global flow can be described. This qualitative
analysis is very useful to the understanding of the motion of certain small bodies
of the solar system (comets, some asteroids) at very small and very large distances
from the Sun.

1. INTRODUCTION

Consider a potential field featured by a force
function

U(r) = A/r + B/r3, (1)
where r = radius vector of a particle with respect to
the source of the field, r = |r|, A, B = real, nonzero
constants. The two-body problem (or the equiva-
lent central force problem) associated to such a field
will be called the Schwarzschild problem. Indeed, us-
ing Schwarzschild’s (1916) metric to caracterize the
gravitational field, one is led to a Binet-type equa-
tion in which the force corresponds to a potential of
the form (1).

The Schwarzschild problem constitutes a mo-
del for many concrete astronomical situations in the
solar system: the relativistic gravitational field of
Schwarzschild (A > 0, B > 0), the photogravita-
tional field of the Sun (where situations with A < 0
may occur), the motion in the equatorial plane of

oblate bodies (B < 0), etc. (see e.g. Tisserand 1889;
Eddington 1923; Saari 1974; Saslaw 1978; Blaga and
Mioc 1992; Stoica and Mioc 1997).

Quantitative studies on the motion in such
fields were performed by many authors (e.g. Brum-
berg 1972; Chandrasekhar 1983; Damour and Schae-
fer 1986). As to qualitative studies, these ones are
rather few (e.g. Saari 1974; Belenkii 1981; Szebehely
and Bond 1983; Cid et al. 1983; Stoica and Mioc
1997).

This paper tackles the Schwarzschild problem
from a qualitative standpoint. Resorting to the pow-
erful tool of McGehee’s (1974) transformations of the
second kind, the singularity at r = 0 is blown up,
obtaining on the one hand regularized equations of
motion and integral of energy, and extending on the
other hand the phase space to the collision manifold
M0. We describe the (fictious) flow on M0, which
provides informations about near-collisional orbits.

Next, in a somewhat symmetrically maner, we
build the so-called infinity manifold M∞, and de-
scribe the flow on it. This is a fictious flow again, but
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allows the understanding of the behaviour of near-
escape motion.

Finally, exploiting the rotational symmetry of
the global flow, we reduce the 4D full phase space to
dimension 3. Considering the angular momentum to
be a check parameter, clear pictures of the global flow
can be obtained in the zero energy case. The reduced
phase space structure is described for the whole in-
terplay among the field parameter and the angular
momentum. The phase curves are both transposed
in full phase space and interpreted in terms of phys-
ical motion.

Of course, the zero energy case constitutes a
rather special situation among the motion in the so-
lar system. Neverthless, there are orbits of certain
bodies (comets, some asteroids, grains, dust) related
to such a case. The Schwarzschild model allows a
better understanding of the behaviour of very ec-
centric trajectoires at very small and very large dis-
tances from the central body.

2. EQUATIONS OF MOTION AND FIRST
INTEGRALS

The potential (1) is central, hence the motion
is planar. Let the field source be fixed at the origin
of the motion plane R2, and let q = (q1, q2) ∈ R2,
p = (p1, p2) ∈ R2 be the configuration and the mo-
mentum vector of the moving body (hereafter parti-
cle), respectively. The motion equations read{

q̇ = ∂H(q,p)/∂p,

p=̇ − ∂H(q,p)/∂q,
(2)

and define a vector field on the phase space Q × P,
where Q = R2\{(0, 0)} is the configuration space,
while P = R2 is the momentum space. The Hamil-
tonian

H(q,p) = |p|2 /2 − A/ |q| − B/ |q|3 = h/2, (3)

is a first integral of the motion (the energy integral;
h is the energy constant). Another first integral is
that of angular momentum

L(q,p) = q1p2 − q2p1 = C, (4)

where C is the angular momentum constant.

3. McGEHEE’S TRANSFORMATIONS

The potential, the energy integral, and the
equations of motion have an isolated singularity at
the origin: q = (0, 0); it corresponds to the collision
of the particle with the centre (see Saari 1974). To
remove it, we apply successively the McGehee (1974)
transformations of the second kind:



r = |q| ,
θ = arctan(q2/q1),

u = ṙ = (q1p1 + q2p2)/ |q| ,
v = rθ̇ = (q1p2 − q2p1)/ |q| ;

(5)

{
x = r3/2u,

y = r3/2v;
(6)

dt = r5/2ds. (7)

These steps (which all define real analytic diffeomor-
phisms) perform the following changes: (5) introduce
the standard polar coordinates, (6) scale down the
polar components of the velocity, while (7) rescales
the time. Under transformations (5)-(7), the equa-
tions of motion become (Stoica and Mioc 1997)



r′ = rx,

x′ =
3x2

2
+ y2 − Ar2 − 3B,

θ′ = y,

y′ =
xy

2
,

(8)

with ′ = d/ds. The first integrals (3) and (4) now
read

x2 + y2 = hr3 + 2Ar2 + 2B; (9)

y2 = C2r. (10)

Equations (8)-(10) are well defined for the bo-
undary r = 0. This means that the phase space of the
vector field (8) can be extended analytically to this
boundary, which is invariant under the flow because
r′ = 0 when r = 0. The energy and angular momen-
tum relations (9) and (10) also extend smoothly to
the boundary r = 0.

4. COLLISION MANIFOLD

Let us denote

Eh = {(r, θ, x, y) | x2+y2 = hr3+2Ar2+2B}, (11)

Mcol = {(r, θ, x, y) | r = 0}, (12)

and define the collision manifold as M0 = Eh∩Mcol.
In other words,

M0 = {(r, θ, x, y) | r = 0; θ ∈ S1; x2 + y2 = 2B}.
(13)

Obviously, for B > 0, M0 is a 2D cylinder (or a 2D
torus, since θ ∈ S1) in the 3D space of the coordi-
nates (θ, x, y), actually imbedded in the 4D full phase
space of the coordinates (r, θ, x, y). For B = 0, M0

reduces to the circle {r = 0; θ ∈ S1; x = y = 0},
whereas, for B < 0, M0 = ∅, namely collisions can-
not occur, as Saari (1974) already proved, but within
another framework and resorting to another method.
Remark that for M0 �= ∅ (B ≥ 0) every energy level
shares the boundary r = 0 (since M0 does not de-
pend on h).
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The flow on M0 has no physical signifiance;
however, due to the continuity of solutions with re-
spect to initial data, this fictious flow provides valu-
able informations about the near-collisional orbits.
The vector field on M0 is given by



θ′ = y,

x′ = −y2

2
,

y′ =
xy

2
.

(14)

There are two circles of equilibria on the M0 torus:
(θ, x, y) = (θ ∈ S1,±√

2B, 0). One sees by the sec-
ond equation (14) that x′ < 0 for y �= 0, therefore,
besides the degenerate equilibria at y = 0, the flow
consists only of heteroclinic orbits moving from the
upper circle (UC) x =

√
2B to the lower circle (LC)

x = −√
2B. To deduce the slope of these orbits,

one puts x =
√

2B sin α, y = −√
2B cosα, leading

to dα/dθ = 1/2. The flow on M0 (considered as a
cylinder) is illustrated in Figure 1.

Fig. 1. The flow on the M0 cylinder.

Remark that collisions can occur not only for
rectilinear motion (C = 0), but for C �= 0, too (see
also Saari 1974; McGehee 1981). In this last case,
writing the angular momentum integral in polar co-
ordinates, one sees that θ̇ → ∞ when r → 0, which
means that the particle spirals infinitely many times
around the centre immediately before collision (af-
ter ejection). This is the so-called black hole effect
(Diacu et al. 1995).

As a last remark, by (10) it is clear that all
collisional orbits tend to LC or eject from UC.

5. INFINITY MANIFOLD

Somewhat symmetrically, let us tackle the so-
called infinity manifold, corresponding to r → ∞.
For this purpose we apply successively the transfor-
mations (Mioc and Stoica 1997)

ρ = 1/r; (15){
ξ = ρ3/2x,

η = ρ3/2y;
(16)

ds = ρ3/2dτ, (17)

which all are real analytic diffeomorphisms. Under
them, the motion equations turn into



dρ/dτ = −ρξ,

dθ/dτ = η,

dξ/dτ = η2 − Aρ − 3Bρ3,

dη/dτ = −ξη,

(18)

while the first integrals (9) and (10) become respec-
tively

ξ2 + η2 = h + 2Aρ + 2Bρ3; (19)

η = Cρ. (20)
Denote

Ẽh = {(ρ, θ, ξ, η) | ξ2 + η2 = h+2Aρ+2Bρ3}, (21)

Minf = {(ρ, θ, ξ, η) | ρ = 0}, (22)

and define the infinity manifold as M∞ = Ẽh ∩Minf ,
that is

M∞ = {(ρ, θ, ξ, η) | ρ = 0; θ ∈ S1; ξ2 + η2 = h}.
(23)

It is clear that, for h > 0, M∞ is a 2D cylinder
(or a 2D torus, because θ ∈ S1) in the 3D space of
the coordinates (θ, ξ, η), actually imbedded in the 4D
space of the coordinates (ρ, θ, ξ, η). For h = 0, M∞
reduces to the circle {ρ = 0; θ ∈ S1; ξ = η = 0},
while h < 0 leads to M∞ = ∅. In other words, for
h < 0 the particle cannot escape.

The flow on M∞ has no more physical signifi-
ance than that on M0. Nevertheless, due to the same
continuity with respect to initial data, this fictious
flow contributes to a better understanding of the be-
haviour of near-escape orbits. The vector field on
M∞ is given by 


dθ/dτ = η,

ξ/dτ = η2,

dη/dτ = −ξη.

(24)

There are two circles of equilibria on the M∞ torus:
(θ, ξ, η) = (θ0 ∈ S1,±√

h, 0). The second equation
(24) shows that dξ/dτ > 0 for η �= 0, that is, the
remainder of the flow on M∞ (leaving aside the de-
generate equilibria at η = 0 ) consists of heteroclinic
orbits moving from the lower circle (LC) ξ = −√

h

to the upper circle (UC) ξ =
√

h. To determine
the slope of these phase curves, put ξ =

√
h sin α,

η = −√
h cosα, which yields dα/dθ = −1. The flow

on M∞ (considered as a cylinder) is illustrated in
Figure 2.

By (20), it is obvious that all orbits neighbour
infinity in the zone of UC (the outwards moving ones)
or LC (those which move inwards). It is also clear
that the coordinates (ξ, η) are nothing but the polar
components of the velocity (u, v). In addition, the
vector field (18) could be derived directly from the
initial equations of motion. Neverthless, the elegance
of McGehee’s transformations made us to choose this
way to obtain equations (18)-(20).
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Fig. 2. The flow on the M∞ cylinder.

As a final remark, taking into account (7),
(15), and (17), the flows on M0 and M∞ constitute
equilibria for the phase space orbits.

6. ZERO ENERGY GLOBAL FLOW

Since θ does not appear explicitly in (8) and
(9), we can reduce the 4D full phase space to dimen-
sion 3 (obtaining the reduced phase space RPS) by
factorizing the flow to S1. In RPS the M0 torus be-
comes the circle {r = 0; }x2+y2 = 2B} whose points
M and N correspond to the heteroclinic orbits on the

torus.
Considering the energy to be a parameter, we

approach here the zero energy case (h = 0), for which
we are able to obtain clear pictures of the global flow.
By (8) and (9), the vector field in RPS reads in this
case 



r′ = rx,

x′ +
x2

2
+ Ar2 − B,

y′ =
xy

2
,

(25)

while the energy relation becomes

x2 + y2 − 2Ar2 = 2B. (26)

The last relation shows that in RPS the zero
energy level is a quadric surface foliated by the first
integral (10) into curves lying on a parabolic cylinder
(C �= 0) or in the plane y = 0 (if C = 0). In full
phase space, every such orbit is actually a manifold
consisting of the product between the RPS orbit and
S1.

For A > 0, B > 0, (26) represents the upper
”half” of a hyperboloid of one sheet, whose ”equator”
is the M0 circle (Figure 3). If C = 0, we have the
two branches of hyperbola 1; if 0 < C2 < 4

√
AB,

we have the orbits 2. In full phase space they are
solutions which eject from UC and tend to infinity

Fig. 3. The global flow for A > 0, B > 0, h = 0.
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or come from infinity and tend to LC. Physically
speaking, they are trajectoires of the type ejection-
escape or infinity-collision, rectilinear (curves 1) or
not; for curves 2 the particle spirals infinitely many
times around the centre before collision (after ejec-
tion). The asymptotic velocity at infinity is zero (as
in all similar cases below).

If C2 = 4
√

AB, the solutions in RPS are the
two separatrices with their saddles located at .
E (

√
B/A, 0,

√
2B), E’ (

√
B/A, 0,−√

2B). They co-
rrespond in full phase space to circles, and in phys-
ical space to unstable circular motion at distance
r =

√
B/A from the centre. The heteroclinic lower

branches of the separatrices are in full phase space
heteroclinic solutions ejecting from UC and tend-
ing asymptotically to unstable circular motion (for
ME, ME’), or conversely (for EN, E’N). As to the
upper branches of the separatrices, they are in full
phase space solutions that come from infinity and
tend asymptotically to unstable circular motion, or
conversely. The corresponding physical motion con-
sists of spirals which behave similarly.

If C2 > 4
√

AB, the orbits in RPS are curves
3 (r <

√
B/A) or 4 (r >

√
B/A). The heteroclinic

curves 3 are in full phase space heteroclinic orbits
connecting UC with LC. Physically, they are trajec-
tories that eject spiralling from collision and end spi-
ralling in collision. Curves 4 represent in both full
phase space and physical space noncolliding orbits
which come from infinity and then tend back to in-
finity.

For A < 0, B > 0, (26) represents the upper
half of an ellipsoid, its equator being the M0 circle
(Figure 4). All orbits are heteroclinic; in full phase
space they represent heteroclinic solutions which co-
nnect UC with LC. In physical terms, we deal with

Fig. 4. The global flow for A < 0, B > 0, h = 0.

bounded motions that start and end in collision. The
particle moves radially if C = 0 (curve 1) or spirals
at ejection (collision) else.

For A > 0, B < 0, the motion is collisionless.
According to (26), the zero energy level in RPS is the
upper sheet of a hyperboloid of two sheets (Figure
5). In full phase space, all solutions are of infinity-
infinity type. The physical orbits come from infinity,
reach a minimum distance, and then escape back to
infinity. The motion is radial if C = 0 (curve 1), or
spiral else.

For A < 0, B < 0, (26) shows that zero en-
ergy level in RPS is an imaginary ellipsoid, hence the
real motion is impossible. This completes the qual-
itative picture of the Schwarzschild problem in the
zero energy case.

Fig. 5. The global flow for A > 0, B < 0, h = 0.
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Gauthier-Villars, Paris.

XVARCXILDOV PROBLEM: JEDAN MODEL ZA KRETAǋE
U SUNQEVOM SISTEMU

V. Miok i M. Stavinski
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Str. Cutitul de Argint 5, RO-75212, Bucharest 28, Romania

UDK 521.11;523.2
Originalni nauqni rad

Kretaǌe u poǉu okarakterisanom fun-
kcijom sile A/r + B/r3 (Xvarcxildov prob-
lem) konstituixe jedan realan model za di-
namiku u relativistiqkom Sunqevom poǉu
gravitacije. Kvalitativno prouqavaǌe se
obavǉa uz pomo� mo�nog alata kao xto su Mek
Gehijeve transformacije. Mnogostrukosti lo-
kalnog toka sudara i beskonaqnosti se opisuju

prouqavaǌem putaǌa sa vrlo velikim ekscen-
triqnostima. Globalni tok mo�e da se opixe
u sluqaju putaǌa paraboliqnog tipa. Ova
kvalitativna analiza je vrlo korisna za ra-
zumevaǌe kretaǌa odre�enih malih tela Sun-
qevog sistema (komete, neki asteroidi) na vr-
lo malim i vrlo velikim rastojaǌima od Su-
nca.

26


